Современный анализ механизма мышления
Страница 1

До сих пор существовал огромный разрыв между теориями мышления и практикой решения проблем. Без психологических теорий, на основе эмпирического опыта практиков решения проблем, возникли специальные методы, помогающие еще лучше решать проблемы, чем это происходит стихийно: реинжиниринг и синектика, функционально-стоимостный и морфологический анализ, алгоритмическая методика изобретательства Альтшуллера.

Началом революционного пересмотра механизмов мышления стали работы в области искусственного интеллекта. До этого основным объектом внимания психологов были осознаваемые рассуждения, мышление в форме процессов, умственных действий, операций типа сложения многозначных чисел, размышления над такими поэтапными задачами, решение которых объективно состояло из рассуждений. Реально же у человека решение проблем протекает в форме одномоментной генерации интуитивно-очевидных готовых идей. Но психологии, ориентированной только на самоотчеты испытуемых, разобраться с этим было невозможно. И она исследовала то, что было легко доступно.

Специалисты по искусственному интеллекту в содружестве с лингвистами начинали с моделирования простых ответов на простые вопросы. Но эти простые модели показали, как возникают ответы на любые вопросы, а следовательно и то, как возникают любые интуитивные идеи! Сущность мышления оказалась скрытой не в хитрых алгоритмах рассуждений, эвристиках, как это предполагали ранее психологи, а в структуре знаний. При восприятии от условий и от требований задачи по индивидуально-оригинальной структуре знаний автоматически распространяется активация. Встречаясь, эти активационные процессы приводят к ответу. Современные экспертные системы искусственного интеллекта прекрасно воспроизводят мышление врачей и геологов, химиков и инженеров. Однако работа экспертных систем основана на комбинировании тех знаний, которые в них заложили разработчики. Следовательно, экспертные системы, в принципе, не могут предложить идей, которых не было у их создателей. Они полезны малоопытным специалистам или в случае необходимости быстрого принятия сложного решения, но открытий они не сделают.

Зато теория искусственного интеллекта проложила дорогу к теории человеческой интуиции, рождающей любые открытия. Отличие человека от компьютера в том, что знания у каждого человека, особенно в области его постоянной деятельности, индивидуально оригинальны. А о первичных источниках части этих знаний, собираемых в течение всей жизни, человек и сам давно забыл. Поэтому, иногда, авторы оригинальных идей и сами не могут объяснить, откуда они пришли. Хотя, в большинстве случаев, автор идеи прекрасно понимает, на основе каких его индивидуально-оригинальных знаний эти идеи возникли. Таким образом теория искусственного интеллекта, объясняющая как одномоментно возникают готовые идеи, если ее применять для объяснения работы генерации идей на основе индивидуально-оригинальных знаний, по сути, является теорией интуиции.

Интуитивно-очевидные идеи далеко не всегда являются высоко эффективными. Если структура знаний шаблонна, то "озаряют" не эффективные, решающие проблему, идеи, а идеи шаблонные, инерционные. Как же находить эффективные решения, если структура высоковероятных для данного человека знаний шаблонна? Ответ на это дали различные, упомянутые выше, специальные методы поиска новых идей - различные методики изобретательства, реинжиниринг.

Однако, под всеми этими методами не было теоретической базы, они возникли стихийно, на основе эмпирического опыта. Разработка же теории позволила объединить все знания о методах решении проблем в единый комплекс. Такая теория, названная структурно-активационной теорией мышления, разрабатывалась с 1982 года и в настоящее время подробно изложена в книге Н.Ф. Овчинникова "Новый взгляд на мышление", а кратко - в "Новый взгляд на мышление" "Тренинге инновационного мышления". Суть этой теории состоит в следующем. В отличие от обычных теорий структур знаний, используемых в работах по искусственному интеллекту и предполагающих относительно однородные структуры, вводится представление о наличии маловероятных областей знаний, связанных с исходно понимаемыми условиями проблемы слабыми или многоступенчатыми, отдаленными связями. При решении задач методом одномоментной генерации интуитивно-очевидных идей используются только наиболее сильные, высоковероятные структуры, фреймы. Остальные, менее вероятные структуры, более или менее связанные с задачей, активируются до подпорогового уровня и не осознаются. При последующих осознанных рассуждениях, размышлениях они могут, получив дополнительную активацию, стать осознанными и привести к новым, альтернативным идеям. Таким образом, даже при структуре знаний мало адекватной проблеме и генерирующей стихийно, в виде интуитивных идей не эффективные решения, возможен выход на альтернативные и эффективные идеи.

Страницы: 1 2 3

Смотрите также

Строение, свойства и функции белков
...

Биополимеры бактериальной клеточной стенки
...

Влияние света на процесс фотосинтеза
Введение Бесконечна сложна и разнообразна жизнь. Австралийские эвкалипты поднимаются ввысь на 150 м, а ряска, покрывающая пруды, достигают всего лишь 1 мм. Американская секвойя име ...

 
 




Copyright © 2013 - Все права защищены - www.biotheory.ru