Моделирование биохимических и генетических процессов в клеткеУчебные материалы по биологии / Моделирование биохимических и генетических процессов в клетке
Введение
Каждая биологическая система обладает свойством саморегуляции, то есть способностью перестраиваться в зависимости от внешних воздействий так, чтобы сохранился оптимальный уровень ее функционирования.
Существуют различные способы регуляции жизнедеятельности клетки, которые можно условно отнести к генетическому, биохимическому и физиологическому уровням регуляции. В пределах каждого из них действуют механизмы, в основе которых лежит последовательность конкретных метаболических процессов. Понять динамические свойства этих регуляторных механизмов можно на основе общесистемного подхода, рассматривающего поведение каждого из элементов сложной системы как результат его взаимодействия с остальными элементами.
Одним из наиболее развитых подходов для решения этой проблемы в современной биофизике является математическое моделирование. В кинетических моделях отражается динамика изменения концентраций различных составных элементов биологической системы, которая определяется скоростями отдельных элементарных реакций.
В основе процессов обмена клетки со средой и внутреннего метаболизма лежит сложная сеть организованных определенным образом во времени и пространстве различных реакций. В результате этих процессов изменяются концентрации различных веществ, численность отдельных клеток, биомасса организмов или, например, величина трансмембранного потенциала в клетке. Изменения всех этих переменных величин во времени составляют кинетику биологических процессов, которую хорошо описывают современные математические модели [1].
На сегодняшний день благодаря развитию математического моделирования возможность создания комплексной математической модели клетки, способной учитывать кинетику изменения содержания основных компонентов клетки, осуществлять исследование метаболических процессов, а также анализировать генетический материал, стала осуществимой, по крайней мере, для прокариот. Однако есть сложности в построении подобной модели для эукариотических клеток, ввиду большого количества исследуемых параметров и сложности взаимодействия изучаемых параметров клетки между собой.
Целью работы стало:
изучение и освоение основ работы современных программных обеспечений для осуществления моделирования всех биохимических и генетических процессов в клетке
построение математической модели динамики изменения объема и потенциала эритроцита в зависимости от концентраций проникающих ионов и рН внеклеточной среды на базе ранее созданной модели для липосомы
Выполняя построение математической модели, мною были поставлены следующие цели:
осуществить расчет изменения потенциала, объема, водного потока и концентраций проникающих ионов эритроцита в зависимости от внеклеточного рН
осуществить симуляцию гибели эритроцита методом фиксации трансмембранного потенциала
исследовать скорость изменения потенциала, объема, водного потока и концентраций проникающих ионов эритроцита в зависимости от низких показателей внеклеточного рН (0,3 - 0,9)
Смотрите также
Мечников Илья Ильич: великий учёный - борец за здоровье человека
Введение.
Мечников Илья Ильич: великий учёный - борец за здоровье человека
Мечников
Илья Ильич (1845-1916), российский биолог и патолог, один из основоположников
сравнительной патоло ...
Физиология промежуточного мозга. Психофизиология речи и мыслительной деятельности
Введение
Организм
находится в непрерывном взаимодействии с окружающей его внешней средой. Это
взаимодействие очень многогранно; оно обусловлено, с одной стороны, степенью сложности
о ...
Реакция растений на факторы среды: влияние микроэлементов почвы как фактора
Введение
О значении микроэлементов свидетельствуют наступающие в
отсутствие того или иного из них разнообразные нарушения в ходе роста и
развития растений, их иммунитета к болезням и ...